Перейти до змісту

Системи числення

Ми зазвичай ведемо рахунок десятками (10 одиниць утворює десятку, 10 десятків - сотню і т.д.), тобто ведемо рахунок у десятковій системі числення. Але існують і інші системи числення.

Система числення — сукупність правил зображення чисел цифровими знаками.

Розрізняють позиційні й непозиційні системи числення.

У непозиційних системах числення вага знака не залежить від його положення по відношенню до інших знаків у числі. Наприклад у римській системі числення:

  • I - 1
  • V - 5
  • X - 10 і так далі.

В одиничній системі числення число сім представляється сімома одиничками: (7)10 = (1111111)1. Недоліками непозиційних систем числення є:

  • громіздкість зображення чисел;
  • труднощі у виконанні операцій.

Для позиційних систем числення характерні наочність зображення чисел і відносна простота виконання операцій.

Система числення називається позиційною, якщо під час запису числа одна і таж цифра має різне значення, яке визначається місцем (позицією), на якому вона знаходиться.

У позиційній системі для запису числа використовується обмежена кількість знаків - цифр, яка визначає назву системи числення і називається її основою. Араби взяли за основу число 10, тому що в якості обчислювального пристрою вони використовували 10 пальців рук. В десятковій системі для запису числа використовується десять цифр від 0 до 9 і основою є число 10. Число у цій системі числення можна представити у вигляді степенів десяти:

(237)10 = 2*102+3*101 + 7*100

Системи числення, що використовуються в комп'ютерах

Система числення з основою N=2 є позиційною системою числення і нічим не відрізняється від позиційної система числення з будь-якою основою. Але для комп'ютера ця система числення має перевагу - її алфавіт має всього два символи. Тобто, для фіксації її символів достатньо мати деякий пристрій, що може мати два суттєво різних і стійких стани.

Людині більш звична десяткова система, у якій відпрацьовані прийоми записування чисел по його імені, визначення імені по запису, визначення ваги числа по його запису й імені, відпрацьовані прийоми додавання, віднімання, множення й ділення будь-яких чисел. У двійковому записі числа важко одразу визначити його значення, немає поняття імені саме двійкового числа, важко зіставити ланцюжок 1 і 0 із його змістом. Таким чином виникає потреба перетворювати двійкові записи у десяткові і навпаки.

Приклади:

(5)10 = (101)2

У програмуванні вагоме місце займають вісімкова й шістнадцяткова системи числення, які використовуються для скороченого запису двійкових кодів.

У вісімковій системі числення в якості цифр використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7. В шістнадцятковій системі потрібно 16 символів, в якості яких використовують арабські цифри і п'ять букв латинського алфавіту, що утворюють послідовність: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, C, D, E, F. Десяткові еквіваленти символів A, B, C, D, E, F:

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15
Back to top